APPROXIMATE BANDWIDTH ALLOCATION FOR COMPOSITIONAL REAL-TIME SYSTEMS

Farhana Dewan
Advisor: Nathan Fisher
Wayne State University, Detroit, MI

Problem and Objective

Problem:
- Allocation of bandwidth among components of a compositional real-time systems
- State-of-the-art algorithms for bandwidth allocation use either pseudo-polynomial-time techniques for exact allocation [2], or linear-time, utilization-based techniques [1] which may over-provision bandwidth.

Goal:
- Minimize the bandwidth allocated to each component and simultaneously guarantee component schedulability.
- Provide system designer an option to choose accuracy ε to trade bandwidth with computational efficiency.

Solution: An Approximation Scheme

Develop a Polynomial-Time Parametric Approximation Scheme for capacity determination

Setting:
- Compositional RTS with sporadic tasks as component
- Fixed priority (e.g., deadline monotonic) scheduler
- Explicit-Deadline Periodic (EDP) resource

Solution: Challenge #1

✓ Reduce the number of points in testing set to polynomial in the size of τ and 1/ε [3]

\[\text{Cumulative Approx. Request-Bound Function} \]

Solution: Challenge #2

✓ Determine how to set minimum capacity Θi for each testing set point t

Our Algorithm [4]

- FPMinimumCapacity (Π, Δ, τ, ε)
 - Initialize Θ(0) with \(U(τ) \).
 - For each Θi ∈ Θ:
 - For each point in the Approximate Testing set
 - Initialize line segment
 - For the four values of \(\ell \)
 - Find Θi s.t. line segment falls below that \(\ell \)-th step
 - Set Θi to be the minimum of these s.t. line segment is beneath some \(\ell \)-th step
 - Set Θ(∞) to be maximum of all Θ over tasks

Complexity: \(O(n^2 \log n/ε) \)

Comparison

 - Significant reduction in relative error
 - Only 5% error for approximation algorithms
 - 30-95% for sufficient algorithms
 - 95% confidence interval are shown

 - Runtime for approximate algorithm shows improvement than the exact case

References

Email: farhanad@wayne.edu