Open Problems in Multi-Modal Scheduling Theory for Thermal-Resilient Multicore Systems

Nathan Fisher Masud Ahmed Pradeep M. Hettiarachchi

Department of Computer Science, Wayne State University, Detroit, Michigan, USA
{fishern, masud, pradeepmh}@wayne.edu

I. INTRODUCTION

Recent research on thermal-aware real-time systems has focused upon developing design frameworks that ensure predictable timing behavior for systems executing in dynamic thermal environments. For such dynamic environments, a thermally-resilient real-time system [4] must adapt both its timing requirements and thermal-dissipation rates in response to a changing environmental temperature. On the hardware side, thermal dissipation rates might potentially be reduced via dynamic voltage/frequency scaling (DVFS) and/or dynamic power management (DPM) techniques such as putting the CPU into low-power/idle states. On the software side, the adaptation of timing requirements can be achieved through multi-modal tasks systems, providing the means to change task timing parameters (e.g., execution requirement, period, deadline, etc.) and/or to add/drop tasks from the system. The ultimate goal for thermal-resilient real-time systems is the capability of a real-time system designer to accurately predict (at design time) what real-time mode can be supported for any given environmental temperature.

Our initial work on the development of a design framework for thermal-resilient real-time systems focused on single-core systems (see Hettiarachchi et al. [4]). To achieve both adaptivity and predictability in our design framework, we introduced the concept of a real-time performance mode which explicitly coupled hardware and software modes together. The hardware mode was characterized by the periodic resource model [12] which can quantify the execution supply of a non-continuously executing resource (e.g., a processor that switches from an active to an inactive state periodically to change the thermal dissipation of the CPU). Each software mode was characterized by a sporadic task system [7]. In complementary work, we developed single-core schedulability analysis for the real-time performance mode model [2] specified by this periodic-resource/sporadic-task-system combination; thus, the resulting framework is able to provide hard-real-time guarantees.

The above design framework has subsequently been extended to multicore platforms [5]. However, a restrictive limitation is that currently the framework supports only partitioned scheduling of tasks for each mode. The reason for this limitation is that there is a fundamental gap in multi-mode scheduling theory for multicore platforms with non-continuous execution patterns. As our thermal-resiliency framework (and thermal-aware real-time systems, in general) requires schedulability analysis for dynamic processing platforms that utilize DVFS/DPM, it is important that new analysis techniques be developed that will permit these systems to implement a larger set of the global-scheduling algorithms. In this abstract, we will briefly describe the real-time performance mode (i.e., HW/SW-coupled multi-modal) model in the context of global scheduling, outline important scheduling theory questions for this model, and review relevant prior research.

II. REAL-TIME PERFORMANCE MODE MODEL FOR GLOBALLY-SCHEDULED SYSTEMS

We consider a system with \(m \) number of identical CPU cores. The set of real-time performance modes is denoted \(\mathcal{M} \). Each real-time performance mode \(M^{(i)} \in \mathcal{M} \) is characterized by a three-tuple \((\tau^{(i)}, \Theta^{(i)}, \Delta^{(i)})\). The first parameter \(\tau^{(i)} \) denotes a sporadic task with \(n_i \) tasks. Each sporadic task \(\tau^{(i)} \in \tau^{(i)} \) is characterized by a three-tuple \((e^{(i)}, d^{(i)}, p^{(i)})\) where \(e^{(i)} \) is the worst-case execution requirement, \(d^{(i)} \) is the relative deadline, and \(p^{(i)} \) is the minimum inter-arrival separation parameter. The first job of \(\tau^{(i)} \) may arrive at any time after mode \(M^{(i)} \) is activated.

The second parameter of the real-time performance mode \(\Theta^{(i)} \) denotes the resource parameters (i.e., the execution supply guaranteed by the underlying multicore platform). In our previous work, we used a periodic resource \((\Pi^{(i)}, \Theta^{(i)})\) to represent the periodic active/idle times of each core. The term \(\Theta^{(i)} \) represents the minimum resource active durations that is guaranteed in periodic \(\Pi^{(i)} \) length intervals when the system is operating in mode \(M^{(i)} \) mode. However, this model is not expressive enough or flexible enough for global scheduling. Thus, for globally-scheduled systems, \(\Theta^{(i)} \) may be expressed in a more appropriate compositional scheduling model. Potential candidate models for \(\Theta^{(i)} \) include the parallel-supply function (PSF) abstraction [1] and the multiprocessor periodic resource (MPR) [11] model. As an example, in the MPR model, \(\Theta^{(i)} \) can be characterized by a three-tuple \((\Pi^{(i)}, \Theta^{(i)}, m^{(i)})\) where the MPR guarantees a total of \(\Theta^{(i)} \) units of execution in each \(\Pi^{(i)} \)-length period with maximum level of parallelism of \(m^{(i)} \) (i.e., at any given time there are at most \(m^{(i)} \) processors executing tasks of \(\tau^{(i)} \)).

The third parameter \(\Delta^{(i)} \) denotes the minimum amount of time that the processor will remain in mode \(M^{(i)} \). The motivation for this parameter comes from discrete control where changes in a system (plant) occur only at discrete intervals of time. In our thermal-resilient design framework, the mode changes occur only at these sampling intervals. In fact, it is convenient and often the case that \(\Delta^{(i)} \) can be set as a multiple of the resource period \(\Pi^{(i)} \).

This work has been supported in part by the US National Science Foundation (Grant Nos. CNS-0953585 and CNS-1205338).
§Mode-Change Semantics. A mode-change request $\text{mcr}_k \equiv (M^{(i)}, M^{(j)}, t_k)$ consists of transition time (t_k), the old mode $M^{(i)}$ executing prior to t_k, and the new mode $M^{(j)}$ executing after t_k (where $i, j \in \{1, \ldots, q\}$). We assume that if $i < j$ then mcr_i occurs prior to mcr_j. For $\text{mcr}_{k-1} \equiv (M^{(h)}, M^{(i)}, t_{k-1})$ and $\text{mcr}_k \equiv (M^{(i)}, M^{(j)}, t_k)$, the difference $t_k - t_{k-1}$ must be at least $\Delta^{(i)}$ to ensure the minimum activation time for mode $M^{(i)}$. Figure 1 illustrates a mode-change-request sequence.

Tasks may be divided into groups based on their importance at the time of the mode change request $\text{mcr}_k \equiv (M^{(i)}, M^{(j)}, t_k)$ (See Real and Crespo [10] for complete taxonomy). Some important tasks may need to continue to execute without being affected by the mode change request. We call these tasks unchanged tasks denoted by $\tau^{(j)}$. Some less important tasks may be removed from the system immediately at the time of the mode change request. We call these tasks aborted tasks and denote them by $\alpha^{(j)}$.

For some tasks, immediate termination may leave the system in an inconsistent state; we call such tasks finished tasks and characterize them as being members of the set $\tau^{(i)} \setminus (\alpha^{(i)} \cup \tau^{(j)})$). We allow a job from a finished task at the time of a mode change request to complete its remaining execution. Given the above definitions, we may distinguish three phases with respect to a mode-change request $\text{mcr}_k = (M^{(i)}, M^{(j)}, t_k)$ (from the previous request $\text{mcr}_{k-1} = (M^{(h)}, M^{(i)}, t_{k-1})$):

1. $[t_{k-1}, t_k)$: jobs of $\tau^{(i)}$ are executed upon $\Omega^{(j)}$;
2. $[t_k, t_{k+1})$: incomplete jobs of $(\tau^{(i)} \setminus \alpha^{(i)})$ at t_k and jobs of $\tau^{(j)}$ execute upon $\Omega^{(j)}$;
3. $[t_{k-1}, t_{k+1})$: unchanged tasks $\tau^{(i)}$ will act independent of mode change request.

III. OPEN PROBLEMS & RELATED WORK

Informally, our main open problem statement is simple to state: given an m-core platform and multi-modal system M determine whether all tasks of every modes will always meet all deadlines under any possible legal mode-change sequence. However, there are many dimensions to this problem that make it possible to define a “family” of related subproblems. In particular, we may consider the following different aspects of the system:

D1 Global Scheduling Algorithm: schedulability analysis is needed for both global earliest-deadline-first and fixed-priority scheduling algorithms to be applicable for real systems that implement the thermal-resiliency framework.

D2 Multiprocessor Resource Model: As mentioned in the previous section, we can consider different models such as PSF or MPR for expressing the $\Omega^{(j)}$ parameter.

In addition to the schedulability analysis problem, an important variant problem is determining the minimum allocation for each mode to maintain schedulability. Some open questions for the allocation problem are: 1) What is the most appropriate definition of “minimum allocation” for thermal-resilient systems? (e.g., if $\Omega^{(i)}$ is an MPR, is minimizing the sum of the capacities a good objective to decrease total thermal dissipation?); and 2) How do we efficiently deal with the combinatorial nature of the problem? (I.e., there might be numerous combinations of capacities that are schedulable).

§Related Prior Work. Extensive research effort has been focused on developing multi-modal schedulability analysis for multicore platforms (e.g., see [3], [6], [8], [9]). To the best of our knowledge, each of these prior works assumes the underlying processing cores execute at a fixed speed/rate. However, we hope that these multi-modal results for fixed-rate multicore platforms might be extendable to platforms with DVFS/DPM capabilities to solve the open problems posed in this abstract. A starting point might be trying to extend the multi-modal analysis for uniform multiprocessors [13] to real-time performance modes.

REFERENCES